Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni.

Identifieur interne : 000939 ( Main/Exploration ); précédent : 000938; suivant : 000940

Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni.

Auteurs : Hsin-Hung Huang [États-Unis] ; Latasha Day ; Cynthia L. Cass ; David P. Ballou ; Charles H. Williams ; David L. Williams

Source :

RBID : pubmed:21630672

Descripteurs français

English descriptors

Abstract

Thioredoxin glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both thioredoxin and glutathione disulfides (GSSG), thus playing a crucial role in maintaining redox homeostasis in the parasite. In line with this role, previous studies have demonstrated that SmTGR is a promising drug target for schistosomiasis. To aid in the development of efficacious drugs that target SmTGR, it is essential to understand the catalytic mechanism of SmTGR. SmTGR is a dimeric flavoprotein in the glutathione reductase family and has a head-to-tail arrangement of its monomers; each subunit has the components of both a thioredoxin reductase (TrxR) domain and a glutaredoxin (Grx) domain. However, the active site of the TrxR domain is composed of residues from both subunits: FAD and a redox-active Cys-154/Cys-159 pair from one subunit and a redox-active Cys-596'/Sec-597' pair from the other; the active site of the Grx domain contains a redox-active Cys-28/Cys-31 pair. Via its Cys-28/Cys-31 dithiol and/or its Cys-596'/Sec-597' thiol-selenolate, SmTGR can catalyze the reduction of a variety of substrates by NADPH. It is presumed that SmTGR catalyzes deglutathionylation reactions via the Cys-28/Cys-31 dithiol. Our anaerobic titration data suggest that reducing equivalents from NADPH can indeed reach the Cys-28/Cys-31 disulfide in the Grx domain to facilitate reductions effected by this cysteine pair. To clarify the specific chemical roles of each redox-active residue with respect to its various reactivities, we generated variants of SmTGR. Cys-28 variants had no Grx deglutathionylation activity, whereas Cys-31 variants retained partial Grx deglutathionylation activity, indicating that the Cys-28 thiolate is the nucleophile initiating deglutathionylation. Lags in the steady-state kinetics, found when wild-type SmTGR was incubated at high concentrations of GSSG, were not present in Grx variants, indicating that this cysteine pair is in some way responsible for the lags. A Sec-597 variant was still able to reduce a variety of substrates, albeit slowly, showing that selenocysteine is important but is not the sole determinant for the broad substrate tolerance of the enzyme. Our data show that Cys-520 and Cys-574 are not likely to be involved in the catalytic mechanism.

DOI: 10.1021/bi200107n
PubMed: 21630672
PubMed Central: PMC3658134


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni.</title>
<author>
<name sortKey="Huang, Hsin Hung" sort="Huang, Hsin Hung" uniqKey="Huang H" first="Hsin-Hung" last="Huang">Hsin-Hung Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Rush University Medical Center, Chicago, Illinois 60612, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Rush University Medical Center, Chicago, Illinois 60612</wicri:regionArea>
<wicri:noRegion>Illinois 60612</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Day, Latasha" sort="Day, Latasha" uniqKey="Day L" first="Latasha" last="Day">Latasha Day</name>
</author>
<author>
<name sortKey="Cass, Cynthia L" sort="Cass, Cynthia L" uniqKey="Cass C" first="Cynthia L" last="Cass">Cynthia L. Cass</name>
</author>
<author>
<name sortKey="Ballou, David P" sort="Ballou, David P" uniqKey="Ballou D" first="David P" last="Ballou">David P. Ballou</name>
</author>
<author>
<name sortKey="Williams, Charles H" sort="Williams, Charles H" uniqKey="Williams C" first="Charles H" last="Williams">Charles H. Williams</name>
</author>
<author>
<name sortKey="Williams, David L" sort="Williams, David L" uniqKey="Williams D" first="David L" last="Williams">David L. Williams</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21630672</idno>
<idno type="pmid">21630672</idno>
<idno type="doi">10.1021/bi200107n</idno>
<idno type="pmc">PMC3658134</idno>
<idno type="wicri:Area/Main/Corpus">000918</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000918</idno>
<idno type="wicri:Area/Main/Curation">000918</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000918</idno>
<idno type="wicri:Area/Main/Exploration">000918</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni.</title>
<author>
<name sortKey="Huang, Hsin Hung" sort="Huang, Hsin Hung" uniqKey="Huang H" first="Hsin-Hung" last="Huang">Hsin-Hung Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Rush University Medical Center, Chicago, Illinois 60612, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Rush University Medical Center, Chicago, Illinois 60612</wicri:regionArea>
<wicri:noRegion>Illinois 60612</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Day, Latasha" sort="Day, Latasha" uniqKey="Day L" first="Latasha" last="Day">Latasha Day</name>
</author>
<author>
<name sortKey="Cass, Cynthia L" sort="Cass, Cynthia L" uniqKey="Cass C" first="Cynthia L" last="Cass">Cynthia L. Cass</name>
</author>
<author>
<name sortKey="Ballou, David P" sort="Ballou, David P" uniqKey="Ballou D" first="David P" last="Ballou">David P. Ballou</name>
</author>
<author>
<name sortKey="Williams, Charles H" sort="Williams, Charles H" uniqKey="Williams C" first="Charles H" last="Williams">Charles H. Williams</name>
</author>
<author>
<name sortKey="Williams, David L" sort="Williams, David L" uniqKey="Williams D" first="David L" last="Williams">David L. Williams</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biocatalysis (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Multienzyme Complexes (chemistry)</term>
<term>Multienzyme Complexes (genetics)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>NADH, NADPH Oxidoreductases (chemistry)</term>
<term>NADH, NADPH Oxidoreductases (genetics)</term>
<term>NADH, NADPH Oxidoreductases (metabolism)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Schistosoma mansoni (enzymology)</term>
<term>Selenocysteine (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Complexes multienzymatiques (composition chimique)</term>
<term>Complexes multienzymatiques (génétique)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>NADH, NADPH oxidoreductases (composition chimique)</term>
<term>NADH, NADPH oxidoreductases (génétique)</term>
<term>NADH, NADPH oxidoreductases (métabolisme)</term>
<term>Schistosoma mansoni (enzymologie)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Sélénocystéine (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biocatalysis</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Structure, Tertiary</term>
<term>Selenocysteine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biocatalyse</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Structure tertiaire des protéines</term>
<term>Sélénocystéine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxin glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both thioredoxin and glutathione disulfides (GSSG), thus playing a crucial role in maintaining redox homeostasis in the parasite. In line with this role, previous studies have demonstrated that SmTGR is a promising drug target for schistosomiasis. To aid in the development of efficacious drugs that target SmTGR, it is essential to understand the catalytic mechanism of SmTGR. SmTGR is a dimeric flavoprotein in the glutathione reductase family and has a head-to-tail arrangement of its monomers; each subunit has the components of both a thioredoxin reductase (TrxR) domain and a glutaredoxin (Grx) domain. However, the active site of the TrxR domain is composed of residues from both subunits: FAD and a redox-active Cys-154/Cys-159 pair from one subunit and a redox-active Cys-596'/Sec-597' pair from the other; the active site of the Grx domain contains a redox-active Cys-28/Cys-31 pair. Via its Cys-28/Cys-31 dithiol and/or its Cys-596'/Sec-597' thiol-selenolate, SmTGR can catalyze the reduction of a variety of substrates by NADPH. It is presumed that SmTGR catalyzes deglutathionylation reactions via the Cys-28/Cys-31 dithiol. Our anaerobic titration data suggest that reducing equivalents from NADPH can indeed reach the Cys-28/Cys-31 disulfide in the Grx domain to facilitate reductions effected by this cysteine pair. To clarify the specific chemical roles of each redox-active residue with respect to its various reactivities, we generated variants of SmTGR. Cys-28 variants had no Grx deglutathionylation activity, whereas Cys-31 variants retained partial Grx deglutathionylation activity, indicating that the Cys-28 thiolate is the nucleophile initiating deglutathionylation. Lags in the steady-state kinetics, found when wild-type SmTGR was incubated at high concentrations of GSSG, were not present in Grx variants, indicating that this cysteine pair is in some way responsible for the lags. A Sec-597 variant was still able to reduce a variety of substrates, albeit slowly, showing that selenocysteine is important but is not the sole determinant for the broad substrate tolerance of the enzyme. Our data show that Cys-520 and Cys-574 are not likely to be involved in the catalytic mechanism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21630672</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>50</Volume>
<Issue>26</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni.</ArticleTitle>
<Pagination>
<MedlinePgn>5870-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi200107n</ELocationID>
<Abstract>
<AbstractText>Thioredoxin glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both thioredoxin and glutathione disulfides (GSSG), thus playing a crucial role in maintaining redox homeostasis in the parasite. In line with this role, previous studies have demonstrated that SmTGR is a promising drug target for schistosomiasis. To aid in the development of efficacious drugs that target SmTGR, it is essential to understand the catalytic mechanism of SmTGR. SmTGR is a dimeric flavoprotein in the glutathione reductase family and has a head-to-tail arrangement of its monomers; each subunit has the components of both a thioredoxin reductase (TrxR) domain and a glutaredoxin (Grx) domain. However, the active site of the TrxR domain is composed of residues from both subunits: FAD and a redox-active Cys-154/Cys-159 pair from one subunit and a redox-active Cys-596'/Sec-597' pair from the other; the active site of the Grx domain contains a redox-active Cys-28/Cys-31 pair. Via its Cys-28/Cys-31 dithiol and/or its Cys-596'/Sec-597' thiol-selenolate, SmTGR can catalyze the reduction of a variety of substrates by NADPH. It is presumed that SmTGR catalyzes deglutathionylation reactions via the Cys-28/Cys-31 dithiol. Our anaerobic titration data suggest that reducing equivalents from NADPH can indeed reach the Cys-28/Cys-31 disulfide in the Grx domain to facilitate reductions effected by this cysteine pair. To clarify the specific chemical roles of each redox-active residue with respect to its various reactivities, we generated variants of SmTGR. Cys-28 variants had no Grx deglutathionylation activity, whereas Cys-31 variants retained partial Grx deglutathionylation activity, indicating that the Cys-28 thiolate is the nucleophile initiating deglutathionylation. Lags in the steady-state kinetics, found when wild-type SmTGR was incubated at high concentrations of GSSG, were not present in Grx variants, indicating that this cysteine pair is in some way responsible for the lags. A Sec-597 variant was still able to reduce a variety of substrates, albeit slowly, showing that selenocysteine is important but is not the sole determinant for the broad substrate tolerance of the enzyme. Our data show that Cys-520 and Cys-574 are not likely to be involved in the catalytic mechanism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Hsin-Hung</ForeName>
<Initials>HH</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Rush University Medical Center, Chicago, Illinois 60612, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Day</LastName>
<ForeName>Latasha</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cass</LastName>
<ForeName>Cynthia L</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ballou</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Charles H</ForeName>
<Initials>CH</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI065622</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI065622</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0CH9049VIS</RegistryNumber>
<NameOfSubstance UI="D017279">Selenocysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.4.-</RegistryNumber>
<NameOfSubstance UI="C466433">thioredoxin glutathione reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="Y">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012550" MajorTopicYN="N">Schistosoma mansoni</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017279" MajorTopicYN="N">Selenocysteine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21630672</ArticleId>
<ArticleId IdType="doi">10.1021/bi200107n</ArticleId>
<ArticleId IdType="pmc">PMC3658134</ArticleId>
<ArticleId IdType="mid">NIHMS458690</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1999;300:226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9919525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Assay Drug Dev Technol. 2008 Aug;6(4):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 12;47(6):1721-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2011 Jun;41(1):73-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20397034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 27;283(26):17898-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Nov 5;210(1):163-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2585516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2004 Jan;133(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 1999 Jan;129(1):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9915899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jun;1790(6):495-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 15;285(42):32557-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(6):221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Feb 7;28(3):1194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2653437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1981 Mar 17;20(6):1513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7013796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Jul 15;207(2):487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Feb 12;285(7):4595-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Aug 7;273(32):20096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9685351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Oct 16;284(42):28977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2007 Oct;388(10):997-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17937613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):5854-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Dec 18;202(3):863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1684937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Today. 1993 May;9(5):162-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15463744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Investig Drugs. 2007 Feb;8(2):105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17328226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Apr 25;39(16):4711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):33020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12816954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Feb 10;258(3):1752-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6822532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Mar 12;30(10):2600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2001350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2002 Sep;32(10):1285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12204228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Jan;4(1):e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17214506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2004 Feb 15;67(4):689-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 2;49(4):810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19968277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17001-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Dec 2;47(48):12769-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18991392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6126-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2009 Oct 22;52(20):6474-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19761212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2008;2(1):e127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Mar 9;38(10):3187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):32967-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12618-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Jun;4(6):e206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17579510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 24;278(4):2141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Apr;14(4):407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18345010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Oct 8;292(5):1003-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10512699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17640917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2002 Apr 30;121(1):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph Model. 2009 Feb;27(6):665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1989 Jan 2;178(3):693-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2912729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 9;284(2):723-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Sep 1;39(5):696-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Infect Dis. 2008 Dec;21(6):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Aug 15;72(3):936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18300227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Res Rev. 2004 Jan;24(1):40-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 8;44(44):14528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Nov 22;33(46):13888-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7947797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 15;280(28):26491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trans R Soc Trop Med Hyg. 2007 Apr;101(4):385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):4959-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21051543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3621-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 May 1;347 Pt 3:661-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 16;275(24):18121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ballou, David P" sort="Ballou, David P" uniqKey="Ballou D" first="David P" last="Ballou">David P. Ballou</name>
<name sortKey="Cass, Cynthia L" sort="Cass, Cynthia L" uniqKey="Cass C" first="Cynthia L" last="Cass">Cynthia L. Cass</name>
<name sortKey="Day, Latasha" sort="Day, Latasha" uniqKey="Day L" first="Latasha" last="Day">Latasha Day</name>
<name sortKey="Williams, Charles H" sort="Williams, Charles H" uniqKey="Williams C" first="Charles H" last="Williams">Charles H. Williams</name>
<name sortKey="Williams, David L" sort="Williams, David L" uniqKey="Williams D" first="David L" last="Williams">David L. Williams</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Huang, Hsin Hung" sort="Huang, Hsin Hung" uniqKey="Huang H" first="Hsin-Hung" last="Huang">Hsin-Hung Huang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000939 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000939 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21630672
   |texte=   Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21630672" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020